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1. Introduction

The general quadratic programming problem is

minimize: 4 X’~DX + 
T

(1)

subject to: Ax < b

In (5], Eaves describes a procedure that in a finite number of

steps, determines either the global, minimum of (1) or a half line of the

constraint set along which the minimand is unbounded below. That a

quadratic func tion on any non~~pty polyhedral convex set either attains

its infinum there or is unbounded below on a half line of the set is

given to us by the Frank—Wolfe theorem, [4,61.

In this paper we shall present an alternative method that also

accomplishes this task in a finite number of steps. Like that of Eaves,

it is mainly of theoretical interest, being computationally useful only

on problems that have a small number of variables. Our approach will

be to adapt the ideas in [7] to obtain a recursive procedure, that is,
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r
one which begins with a problem in n variables, and then reduces it

to a problem of exactly the same form in fever than n variables.

Other finite methods for finding global minima of quadratic

programs (see f or example ( 2 ] )  do so by obtaining the best local minimum

and are unable to detect whether or not the constrained minimand is

unbounded below.

2. No tation

Let ii denote {l, 2, ... , n}. For xE Rn
, a C~~, let x

~ 
E Rk

denote (x , ... , where a = {a1, ... , ci~~},  
~~~ 

<~~~~<

For A E ~~~~ a Cm , B C n, let A denote the subma trix of

A whose rows are indexed by a; let A
8 

denote the submatrix of A

whose columns are indexed by B; let A
~8 

denote (A
~~
)
8
.

Let (D , C , A, b) denote the quadratic program in (1) where

D E R’~~~, c E R”, A E RmxT~ and b E Rm.

Let Iii denote the end of the procedure.

3. Preliminary Results

We require the following elementary and veil known results which

we shall state without proof (see for example [8]).

Let P(b) be a polyhedral convex set of the form

P(b) — {x E RE
~:Ax < b}

2
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mXn
where A E R . In particular

P(O) — (x E R~ :Ax < 0)

3.1 Lemma: If P(b) is nonempty then P(b) is bounded iff P(O) = (0).

3.2 Lemma: If P(b) is nonentpty , and f:R~ -~ R is a strictly concave

function, then

(1) f is unbounded below on P(b) 1ff P(O) ~ (0); further, if

0 ~ y 
E P( O) and x E P(b) , then f (x  + Oy) + —~~ as e -

~
.

(ii) if P(O) — {O} then f attains its infimum on P(b); moreover

this infimum is attained only at an extreme point of P(b).

3.3 Lemma: Let x E P(b), and let y — {i:A
i 
x = b

i
}. Then x is

an extreme point of P(b) 1ff rank (A) — n, i.e., A,1, 
has full

column rank.

From Lemma 3.3 we obtain immediately

3.4 Le~~a: There is a finite collection ~W of subsets of in such

tha t for all b, x is an extreme point of P(b) 1ff there is a y E ~,N

such that

(1) A~~x — b 
4
t100 1 J

1 L
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(ii) A
1 exists

1.

(iii) A6
x K b~ where ~ = in

In addition to these lemmas we shall require a finite procedure

for the convex case, that is, when the matrix D in (1) is positive

semi—definite. There are several algorithms [3) available for this

task , and so, in what follows we shall simply assume that the convex

case can be (relatively) easily solved in a finite number of steps.

4. The Procedure

We shall assume that the constraint set {x:Ax < b} is non—empty,

and withou t loss of generality that D Is symmetric.

We now proceed as follows:

4.1: The case n = 0. Here the problem is vacuous. Define

the optimal value to be zero and attained at the origin EI~•

4.2: Since D is symmetric, there exists an orthogonal matrix

Q 11 , p. 54] such that

Q
TDQ — Diag (A

1
, .. . ,  A )

where the are the real eigenvalues of D. Setting D — Diag (A
1
, ... , A ) ,

— Q
Tc and A — AQ we obtain an equivalent quadratic program (

~, c , A , b)

- - ____



r
in the transformed variables x , where x — Q

Tx. ~~~ i — f i : A 1 > 0 1

and I~ = {i:A
1 

< 0).

4.3: The convex case, that is, when B — •. By our remarks in

Section 3, we may assume this done rxl

4.4: The non—convex case (P # ~
) is the Interesting case .

Since D is diagonal , we may write the problem (D, c, A , b) as

minimize: (1 —T15 — 

+ —T— 
+ (

~ ~ X + c~~X )
2 (

~~ac1 rz ~~~ 2 ~~~~~~ P I ~
(2)

subject to: A ~ + A x < b
.
~~~~~ ~8 B —

The second term in the minimand is strictly concave since < 0

for I EE ~3. By Lemma 3.2(i) the minimand is unbounded below if there

exi s ts y~ + 0 such that A K 0. Whether or not such a y~ exis ts

can be determined by solving a linear program.

If such a does exist, the minimand in (2) is unbounded below

on the h ai f l i n e  l x  + l~y : O  > 0 1 where ~ — (0 ~~
) and x s a t i s f ie s

Ax < b. Therefore the mlniinand of the original problem (1), c , A , b)

Is unbounded below on the haliline lx + ‘~y : ’~ > O} where x — Qx and

y — Q y .

If no such exists, then for all x ,  the set

R(x ) ~~{x :A x < b - A  ~ Ia B .R B —  . a a

S
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is  bounded . This follows from Lemma 3.1. By Lonmia 3.4 there Is a

finite collection .11 of subsets of in such th~it for each x ,

is an extreme point of R(x ) 1ff there is a y C . U such that

A x = b  — A  x
yB ~~ ~~r L  u

(3)

exis ts,
YB

and

A
~~

x B K b~ — A óct~a where ~ = rn — y . (4)

Further , since the constraint set in (2) is nonempty, there is an

such that R(x’) is nonempty. Since R(x ’) is bounded it contains

extreme points and hence .1/ Is nonempty.

Now , for each f ixed y €. U, use (3) to elim ina te the variables

~ in (2). We do this by writing

X
B
_ H x + h  (5)

where

— —A ’A , h~ —
y l~ ) c l  Y B V

and substituting for x
0 

in the remaining constraints (4) and the

minimand in (2). This yields a reduced problem (D’r, c~ , A~ , b
’1,) ~~

the variables x , where
a

6 ~ - -

_ _  _ _  _



D1 = D + (H Y ) T5~~ H Y

C~ — C + (H~)
T
(c~ +

= A6 +

b
’1, = b

6 
—

Note that by substituting (5) into the minimand of (2) we also obtain

a constant term

= ~ (h’l’)’F15~~h’~ + c~h~

We now apply the recursion to each of the smaller problems

(D1, c’l’, A’~, b
1), that is, we go back to step 4.1 of this procedure

with (D, c, A , b) replaced by (D~
’, c~ , A

’l’, b1). Eventually we

must terminate in a finite number of steps at either the case n = 0

or the convex case .

There are now two possibilities:

(I) For some y, the minimand in (D’1,, c1, A1, h1) is unbounded below

on a haifline {u1 + Ov1:O > 0). Using the relation (5) and imbedding

this haifline back in the constraint set of (2), it follows tha t

7 -
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+ f j
’V \:~ > Cl

+ h~ / \1I ” v~ / 
—

,i ha If 1 inc of  t hi s coost r:i jot set on which t lu n i  nirnand in (2) is

unbounded be low . Transforming thi s ray appropriately using the matrix

Q yie lds the (-orresponding ~y of the o r i g ina l set in ( 1)  . i lo n g

which  that m i n i m an d  is unbounded below .

(ii) For each y, the problem (D1, c1, A1, b1) has a global minimand

at some point u !.

Set

p = mm 1W 1 + g~ }

and let

= ar g n i i n  (W 1 + g~ }

1* 1*so tha t p W  + g

Then ~ is the global minimum of the problem (15, ~~~, A , b) and is

attained at the point

—* I
x =

~ * * *\ H~~u1 + h 1

8 
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l i ~ i s  1 s r id I 1 y si-en to hi- 1 O f l S  j 1 1 L t ! 4  of Lenin i ;i 1. 2(1 i ) . T r a n s f o r m i n g

i s  ~ . t ~~ be f o re  y i e l d s  t~~u ~lu~~i1. r i s i n i tm i m of t i le p rob lem (D , c , A , b)

* * _ *  -- I t l ie  ~~ at  x wh ere  x = 11>:

I I  i s  camp l e t  i’ ;  t h e  pro (1 I t .
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